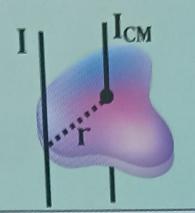
Rotational Motion


Centre of Mass of System of n Particles

$$r_{CM} = \frac{\sum_{i=1}^{n} m_i r_i}{\sum m_i}$$

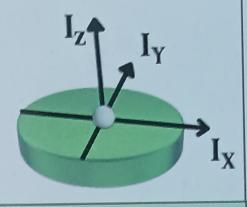
Moment of Inertia

$$I = \sum_{i=1}^n m_i r_i^2$$

Parallel Axes Theorem

$$I = I_{CM} + Mr^2$$

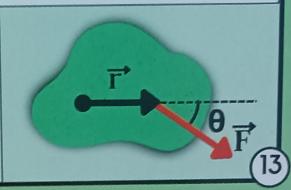
I =Moment on inertia about axis

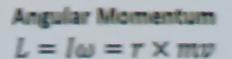

I_{CM} = Moment of inertia about

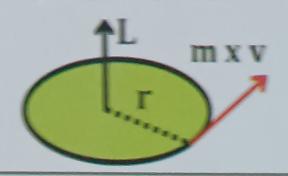
center of mass

M = Mass of the body

r=distance between two axis


Perpendicular Axes Theorem




$$I_Z = I_X + I_Y$$

Ix, I_Y, I_Z are the moment of inertia along X, Y and Z axis

Torque $\tau = r \times F = rF \sin \theta$

Conservation of Angular Momentum

If the external torque acting on a sysytem is zero, then its angular momentum remains constant.

$$l_1\omega_1 = l_2\omega_2$$

Total kinetic energy of a rolling object

$$Energy = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

Value of γ for different Objects

Ring	Hollow Sphere	Disc/Solid Cylinder	Solid Sphere	
$I = MR^2$	$I = \frac{2}{3}MR^2$	$I = \frac{1}{2}MR^2$	$I = \frac{2}{5}MR^2$	
v=1=05	v = 3 = 0.6	$v = \frac{2}{1} = 0.66$	v = 5 = 0.71	

14

	P	Physical Quantity	Ring hollow cylinder	Hollow Sphere	Disc/Solid Cylinder	Solid Sphere
G CO (G		E. _{Translation} γ	0.5	0.6	0.66	0.71
		$\frac{E_{\cdot Rotation}}{K_{\cdot} E_{\cdot Total}} \qquad 1 - \gamma$	0.5	0.4	0.33	0.29
	decimental and	$\frac{E{Translation}}{K.E{Rotation}} \frac{\gamma}{1-\gamma}$	1:1	3:2	2:1	5:2
		Acceleration on inclined surface $(a = g \sin \theta \gamma)$	$\frac{1}{2}g\sin\theta$	$\frac{3}{5}g\sin\theta$	$\frac{2}{3}g\sin\theta$	$\frac{5}{7}g\sin\theta$
N		Time taken to come down $t = \sqrt{\frac{2s}{g\sin\theta\gamma}}$	$\sqrt{\frac{4s}{g\sin\theta}}$	$\sqrt{\frac{10s}{3g\sin\theta}}$	$\sqrt{\frac{6s}{2g\sin\theta}}$	$ \sqrt{\frac{14s}{5g\sin\theta}} $
h = h		Velocity at bottom of inclined surface $oldsymbol{v} = \sqrt{2gH\gamma}$	\sqrt{gh}	$\sqrt{\frac{6gH}{5}}$	$\sqrt{\frac{4gH}{3}}$	$\sqrt{\frac{10gH}{7}}$
d = de		H_{max} attained by particle $H=rac{v^2}{2g\gamma}$	$H = \frac{v^2}{g}$	$H = \frac{5}{6} \frac{v^2}{g}$	$H = \frac{3v^2}{4g}$	$H = \frac{7}{10} \frac{v^2}{g}$
Grav		Friction on inclined plane $= mg \sin \theta (1 - \gamma)$	$\frac{1}{2}mg\sin\theta$	$\frac{2}{5} mg \sin \theta$	$\frac{1}{3}mg\sin\theta$	$\frac{2}{7}$ mg sin θ
Gra dista		μ_{min} to start pure rolling $\mu = \tan \theta (1 - \gamma)$	$\frac{1}{2}\tan\theta$	$\frac{2}{5}\tan\theta$	$\frac{1}{3}\tan\theta$	$\frac{2}{7}\tan\theta$
						(15

NEET 2023 PYQ'S (Chapter 1-5)

- Vehicle travels half the distance with speed v and the other dist. with speed 2v. Its Average speed is: 4v/3.
- A bullet is fired from a gun at the speed of 280 ms-1 in the direction 30° above the horizontal. The maximum height attained by the bullet is:
- A horizontal bridge is built across a river. A student standing on the bridge throws a small ball vertically upwards with a velocity 4 ms⁻¹. The ball strikes the water surface after 4s. The height of bridge is: 64m
- A football player is moving southward and suddenly turns eastward with the same speed to avoid an opponent. The force that acts on the player is: Along North - East
- Calculate the maximum acceleration of a moving car so that a body lying on the floor of the car remains stationary. The coefficient of static friction between the body and the floor is 0.15: 1.5ms⁻²
- A bullet from a gun is fired on a rectangular wooden block with velocity u. When bullet travels 24 cm through the block along its length horizontally, velocity of bullet becomes u/3. Then it further penetrates into the block in the same direction before coming to rest at the other end of the block. The total length of the block is:
 27 cm